

CSS Past Paper Applied Mathematics (2022)

For a comprehensive collection of CSS preparation resources; date sheets, notes, solved past papers, examiner reports, and FPSC-recommended Books, please visit our website or feel free to reach out to us. We are here to assist you in your CSS journey.

FEDERAL PUBLIC SERVICE COMMISSION COMPETITIVE EXAMINATION-2022 FOR RECRUITMENT TO POSTS IN BS-17 UNDER THE FEDERAL GOVERNMENT

Roll Number

APPLIED MATHEMATICS

TIME ALLOWED: THREE HOURS			MAXIMUM MARKS = 100		
) All i) Car v) No Ext	ndidate must write Q. No. in the Answe Page/Space be left blank between the a	estions carry EQUAL marks t be attempted at one place instead of at different places r Book in accordance with Q. No. in the Q.Paper. nswers. All the blank pages of Answer Book must be cr f the attempted question will not be considered.		
Q. No. 1.	(a)	Let u=[y, z, x] and v=[yz, zx, xy],	f = xyz and $g = x + y + z$. Find div (grad (<i>fg</i>)).	(10)	
	(b)	Green's theorem, where	kwise around the boundary <i>C</i> of the region <i>R</i> by <i>C</i> the circle $x^2 + y^2 = 1/4$	(10)	
Q. No. 2.	(a)	· · · ·	oint, are in equilibrium, and the angle between P een P and R. Prove that $R^2 = Q(Q - P)$.	(10)	
	(b)	Find the centre of mass of a semi- as the square of the distance from	circular lamina of radius a whose density varies the centre.	(10)	
Q. No. 3.	(a)	A particle moves in such a way that its position vector at time t is $r = (a \cos nt)i + (b \sin nt)j$, Where a, b, n are constants and a>b>0. Show that the path of the particle is an ellipse of semi-major and minor axes a, b respectively, and that the field of force is directed towards the centre of the ellipse. Also find the maximum speed.			
	(b)	a, whose centre is at a height h verbomb is dropped from the aeroplatO, show that Y satisfies the equat	m speed v_0 in an arc of a vertical circle of radius rtically above a point O of the ground. If a ne when at a height Y and strikes the ground at ion $(2^2 - 2hK) + K(h^2 - a^2) = 0$,	(10)	
Q. No.4.	(a)	Solve the given initial-value prob solution is defined. $xy'+y = e^x$,	where I defines the largest interval I over which the $y(1) = 2$.	(10)	
	(b)	Find the general solution of the given $y''' - 4y'' - y'' - 4y'' - y'' - y''' - y'' - y''' - y'' - y'' - y'' - y'' - y''' - y''' - y'''' - y'''' - y''' - y''' - y''' - y'''''' - y''''''''$	wen higher-order differential equation. - $5y' = 0$	(10)	
Q. No. 5.	(a)	Find two power series solutions ordinary point $x=0$. y'' - 2xy' - y'' - y''' - y'''''' - y'''' - y''''''''	s of the given differential equation about the $y = 0$.	(10)	
	(b)	Find the general solution of the given the given the given the general solution of the given the given the general solution of the given the given the general solution of the given the givent the given the given the givent the givent the given the givent the given the given the given the givent the given the given the givent the given the given the given the givent the given the given the given the given the givent the given the givent the given the given the given the given the givent the givent the given the given the given the givent the givee the givee the giv	ven Bessel's equation on $(0, \infty)$. $x^2y'' + xy' + (9x^2 - 4)y = 0$	(10)	
			Page 1 of	<u>f 2</u>	

Q. No. 6. (a) Find the Fourier series of the given function f(x), which is assumed to have the period 2π . Show the details of your work. (10)

$$f(x) = \begin{cases} x, & -\pi < x < 0 \\ \pi - x, & 0 < x < \pi \end{cases}$$

- (b) Find u(x,t) for the string of length L=1 and $c^2=1$ when the initial velocity is zero (10) and the initial deflection with small k (say, 0.01) is kx(1-x).
- Q. No. 7. (a) Use the Bisection method to determine an approximation to the root of the given (10) function in the interval [1,2] that is accurate to at least within 10^{-4} . $f(x) = x^3 + 4x^2 - 10 = 0$.
 - (b) Values for $f(x) = xe^x$ are given in the following table. Use all the applicable threepoint and five-point formulas to approximate f'(2.0). (10)

Х	1.8	1.9	2.0	2.1	2.2
f(x)	10.889365	12.703199	14.778112	17.148957	19.85503

Q. No. 8. (a) Use the Modified Euler method to approximate the solution to each of the (10) following initial-value problem,

$$y' = -5y + 5t^2 + 2t, \ 0 \le t \le 1, \qquad y(0) = \frac{1}{3}, with \ h = 0.1$$

(b) Use a fixed-point iteration method to determine a solution accurate to within 10^{-2} (10) for $x^4 - 3x^2 - 3 = 0$ on [1, 2]. Use $p_0 = 1$.

Reach out to us @ <u>info@thinked.co</u> If you are interested in writing for us email us at <u>writeforthinked@thinked.co</u>