

CSS Past Paper **Physics** (2019)

For a comprehensive collection of CSS preparation resources; date sheets, notes, solved past papers, examiner reports, and FPSC-recommended Books, please visit our website or feel free to reach out to us. We are here to assist you in your CSS journey.

PHYSICS, PAPER-I

TIME ALLOWED: THREE HOURS PART-I(MCQS): MAXIMUM 30 MINUTES			PART-I (MCQ8) PART-II	MAXIMUM MARKS = 20 MAXIMUM MARKS = 80					
NOTE	2: (i) Pa (ii) At (iii) At (iv) W (v) No (vi) E (vii) L	art-II is to be attempted on the separat ttempt ONLY FOUR questions from F Il the parts (if any) of each Question m Trite Q. No. in the Answer Book in acco o Page/Space be left blank between th rossed. Extra attempt of any question or any par J se of Calculator is allowed.	e Answer Book. PART-II. ALL questions of ust be attempted at one pla ordance with Q. No. in the ne answers. All the blank et of the question will not b	carry EQUAL marks. ace instead of at different pl Q.Paper. pages of Answer Book m be considered.	aces. ust be				
<u>PART – II</u>									
Q. 2.	(a) (b)	Explain the Divergence of a Vector A rural mail carrier leaves the post He then drives in a direction 60.0° s from the post office?	field with its physical sign office and drives 22.0 km south of east for 47.0 km.	ificance? n in a northerly direction. What is his displacement	(10) (5)				
	(c)	Vectors \vec{C} and \vec{D} have magnitudes angle between the directions of \vec{C} (c) -12 units?	s of 3 units and 4 units, and \vec{D} if $\vec{C} \cdot \vec{D}$ equals (respectively. What is the a) zero, (b) 12 units and	(5) (20)				
Q. 3.	(a)	Distinguish between Linear and Angular momentum. Explain the laws of conservation							
	(b)	of Angular momentum. Estimate the net force needed to accelerate (i) a 1000kg car at $\frac{1}{2}$ g; (ii) a 200g apple at							
	(c)	the same rate. A vertical force is applied to a block magnitude of the normal force on th from zero if force is (a) downward a	t of mass m that lies on a f e block from the floor as nd (b) upward?	floor. What happens to the magnitude F is increased	(5) (20)				
Q. 4.	(a)	Describe the Michelson - Morley Ex	periment and show how n	egative results obtained	(10)				
	(b)	Derive equation of Lorentz velocit independent of the relative motion b	y transformations and sh etween the frames of refer	ow that speed of light is rence.	(10) (20)				
Q. 5.	(a)	What is surface tension? How sur	face tension is responsib	le for rising of liquid in	(10)				
	(b)	Water circulates throughout a hou pumped at a speed of 0.50 m/s under a pressure of 3.0 atm, what wi diameter pipe on the second floor into branches	se in a hot-water heating through a 4.0cm diamet ill be the flow speed and t 5.0 m above? Assume	g system. If the water is er pipe in the basement pressure in a 2.6cm the pipes do not divide	(5)				
	(c)	When blood pressure is measured, w	why must the cuff be held a	at the level of the heart?	(5) (20)				
Q. 6.	(a)	What is polarization of waves? H	How plane polarized ligh	nt can be obtained by a	(10)				
	(b)	Two flat mirrors are perpendicular to angle of 15° with the first mirror. second mirror?	o each other. An incoming What angle will the outg	beam of light makes an bing beam make with the	(5)				
	(c)	Since the density of air decrease modulus B is nearly independent of sound waves in air to vary with temp	s with an increase in te temperature. How would y perature?	emperature, but the bulk you expect the speed of	(5) (20)				
Q. 7.	(a) (b)	State and explain Equipartition Theo Define laws of thermodynamics. Exp	orem. plain 3 rd law of thermodyn	amics in detail.	(10) (10) (20)				
Q. 8.	Write (a) (c)	e the short notes on any TWO of the fol Gyrocope Spin and Precession	lowing: (b) Classical Maxw	(10 each) vell-Boltzmann Statistics	(20)				
		- *	****						

PHYSICS, PAPER-II

TIME ALLOWED: THREE HOURS PART-I(MCQS): MAXIMUM 30 MINUTES			PART-I (MCQS) PART-II	MAXIMUM MARKS = 20 MAXIMUM MARKS = 80		20 30				
NOTE: (i) Part-II is to be attempted on the separate Answer Book.										
	(ii) (iii)	(ii) Attempt ONLY FOUR questions from PART-II. ALL questions carry EQUAL marks.								
	(111)	places.								
	(iv) Write Q. No. in the Answer Book in accordance with Q. No. in the Q.Paper.									
	(v) No Page/Space be left blank between the answers. All the blank pages of Answer Book must be crossed									
	(vi) (vii)	 (vi) Extra attempt of any question or any part of the question will not be considered. vii) Use of Calculator is allowed. 								
<u>PART – II</u>										
Q. 2.	(a)	Derive an expression for the torque and potential energy of an electric dipole (10 in an electric field								
	(b)	Show that the energy density of a parallel plate capacitor with dielectric (6) medium between them is directly proportional to the square of electric field								
	(c)	Intensity. In a microwave oven torque actin production of heat. Comment.	g on an electric dipole is	s responsible for the	(4)	(20)				
Q. 3.	(a)	Discuss origin of magnetism by considering processes that creates magnetic field in an atom								
	(b)	What are ferromagnetic doma material is investigated by Hysteres	ins? How does a typ sis loop for technological a	pical ferromagnetic	(8)					
	(c)	How does effect of nuclear magnetic resonance?	magnetism becomes im	portant in nuclear	(4)	(20)				
Q. 4.	(a)	Derive an expression for the ti in one dimension for a single partic	Derive an expression for the time-independent Schrodinger wave equation in one dimension for a single particle. Define Hamiltonian operator.							
	(b)	Discuss various quantum numbers to describe the complete behavior of an electron in an orbital.								
	(c)	How slowly must an electron be r 1mm?	noving for its deBroglie v	vave-length equal to	(4)	(20)				
Q. 5.	(a)	Discuss the behavior of particle tra energy of particle inside the well is	upped in infinitely deep well and show that the quantized.		(10)					
	(b)	Explain the terms wave functi condition associated with quantum	on, probability density mechanics.	and normalization	(6)					
	(c)	Find the expectation value of the m	iomentum.		(4)	(20)				
Q. 6.	(a)	What is an oscillator? How an criteria for oscillations	LC oscillator works? D	iscuss Barkhaausian	(10)					
	(b)	What is a feedback transistor? feedback.	Differentiate negative fee	edback and positive	(6)					
	(c)	what are RC filters			(4)	(20)				
Q. 7.	(a)	Discuss principle, construction Breeder Reactor.	and working of Nuclea	ar Reactor. Define	(8)					
	(b)	What is nuclear fusion? Describe P Sun and Stars.	roton-Proton cycles for en	ergy release in the	(8)					
	(c)	What is Q-Value of a nuclear react	ion?		(4)	(20)				
Q. 8.	Wr (a) (c)	ite comprehensive notes on any TWO o The Biot and Savart law Electromagnetic waves	of the following (b) Cyclotron	(10 each)		(20)				

Reach out to us @ <u>info@thinked.co</u> If you are interested in writing for us email us at <u>writeforthinked@thinked.co</u>