

CSS Past Paper **Pure Mathematics** (2023)

For a comprehensive collection of CSS preparation resources; date sheets, notes, solved past papers, examiner reports, and FPSC-recommended Books, please visit our website or feel free to reach out to us. We are here to assist you in your CSS journey.

FEDERAL PUBLIC SERVICE COMMISSION COMPETITIVE EXAMINATION-2023 FOR RECRUITMENT TO POSTS IN BS-17 UNDER THE FEDERAL GOVERNMENT

PURE MATHEMATICS

TIME ALL	OWED: THREE HOURS	MAXIMUM MARKS = 100
NOTE: (i)	Attempt FIVE questions in all by sele	cting TWO Questions each from SECTION-A&B and
	ONE Question from SECTION-C. ALL questions carry EQUAL marks.	
(ii)	All the parts (if any) of each Question	n must be attempted at one place instead of at different
	places.	
(iii)	Write Q. No. in the Answer Book in accordance with Q. No. in the Q.Paper.	
(iv)	No Page/Space be left blank between	the answers. All the blank pages of Answer Book must
	be crossed.	

- (v) Extra attempt of any question or any part of the attempted question will not be considered.
- (vi) Use of Calculator is allowed.

SECTION-A

Q.1. (a) Find centre of S_3 .

- (b) Using the row operations, show that the matrix $\begin{pmatrix} 1 & 2 & -3 \\ 1 & -2 & 1 \\ 5 & -2 & -3 \end{pmatrix}$ has no inverse. (10) (20)
- **Q.2.** (a) For any group G, show that $\frac{G}{\{e\}} \cong G$ and $\frac{G}{G} \cong \{e\}$. (10)
 - (b) Suppose U and W are distinct four dimensional subspaces of a vector space V of (10) (20) dimension six. Find the possible dimension of $U \cap W$.

Q.3. (a) For what value of
$$\alpha$$
 is the matrix $\begin{pmatrix} -\alpha & \alpha - 1 & \alpha + 1 \\ 1 & 2 & 3 \\ 2 - \alpha & \alpha + 3 & \alpha + 7 \end{pmatrix}$ is singular? (10)

(b) Define $T: \Re^3 \to \Re^3$ by $T(x_1, x_2, x_3) = (-x_3, x_1, x_1 + x_3)$. Find N(T). Is T one-to- (10) (20) one?

SECTION-B

Q.4. (a) Find the value of θ and the limit in order that $\lim_{x \to 0} \frac{\sin 2x + \theta \sin x}{x^3}$ be finite. (10)

(b) Show that
$$x < \sin^{-1} x < \frac{x}{\sqrt{1-x^2}}, 0 < x < 1.$$
 (10) (20)

Q.5. (a) Given that
$$U = \frac{1}{y^2 + y^2 + z^2}$$
. Verify that $U_{xx} + U_{yy} + U_{zz} = 0.$ (10)

(b) Evaluate
$$\iint (x^2 + y^2) dx dy$$
, over the domain bounded by $y = x^2$ and $x = y^2$. (10) (20)

Q. 6. (a) Evaluate
$$\iint (x^2 + y^2) dx dy$$
, over the region bounded by xy=1, y=0, y=x and x=2. (10)

(b) Find an equation of a normal to the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ in the form (10) (20) $ax \cos \theta + by \cot \theta = a^2 + b^2$. Prove that the normal is external bisector of the angle between the focal distances of its foot.

Page 1 of 2

(10)

SECTION-C

- **Q. 7.** (a) Determine k such that $U = e^{2x} \cos ky$ is harmonic and find a conjugate harmonic. (10)
 - (b) Evaluate $\int_{C} (\frac{1}{z^5} + z^3) dz$ from 1 to -1 along the upper arc of the unit circle. (10) (20)
- **Q.8.** (a) Find the Laurent Series of $\frac{1}{1-z^2}$ in the region 0 < |z-1| < 2. (10)
 - (b) Find the residues at the singular points of $\frac{-Z^2 22z + 8}{Z^3 5z^2 + 4z}$ which lie inside the (10) (20) circle |z|=2.

Reach out to us @ <u>info@thinked.co</u> If you are interested in writing for us email us at <u>writeforthinked@thinked.co</u>