

CSS Past Paper Pure Mathematics (2019)

For a comprehensive collection of CSS preparation resources; date sheets, notes, solved past papers, examiner reports, and FPSC-recommended Books, please visit our website or feel free to reach out to us. We are here to assist you in your CSS journey.

FEDERAL PUBLIC SERVICE COMMISSION COMPETITIVE EXAMINATION-2019 FOR RECRUITMENT TO POSTS IN BS-17 UNDER THE FEDERAL GOVERNMENT PURE MATHEMATICS

TIME ALLOWED: THREE HOURS		MAXIMUM MARKS = 100	
NOTE: (i)	Attempt FIVE questions in all by sele	cting TWO Questions each from SECTION-A&B and	
	ONE Question from SECTION-C. ALL questions carry EQUAL marks.		
(ii)	All the parts (if any) of each Question must be attempted at one place instead of at different		
	places.		
(iii)	Write Q. No. in the Answer Book in accordance with Q. No. in the Q.Paper.		
(iv)	No Page/Space be left blank between the answers. All the blank pages of Answer Book must		
	be crossed.		
(v)	Extra attempt of any question or any pa	art of the attempted question will not be considered.	
(vi)	Use of Calculator is allowed.		
SECTION A			

- Q. 1. (a) Show that the order and the index of a subgroup divides the order of a finite (10) group.
 - (b) Show that every finite integral domain is a field. (10) (20)
- Q. 2. (a) Show that the characteristic of an integral domain is R is either zero or a (10) prime.
 - (b) Determine whether or not the set $\{(1, 2, -1), (0, 3, 1), (1, -5, 3)\}$ of vectors (10) (20) is a basis for R^3 .
- **O.3.** (a) Show that a one-to-one linear transformation preserves basis and dimension. (10)
 - (b) Solve the system of linear equations:
 - $2x_1 + x_2 + 5x_3 = 4$ $3x_1 - 2x_2 + 2x_3 = 2$ $5x_1 - 8x_2 + 2x_3 = 1.$

SECTION-B

Q.4. (a) Solve
$$\int_0^{\frac{\pi}{2}} \sin^2 6x \cos^4 3x \, dx.$$
 (10)

(b) Find the area enclosed by
$$y = \frac{6}{2 - \cos \theta}$$
. (10) (20)

- Q.5. (a) Show that in any conic semi-latusrectum is the harmonic mean between the (10) segments of focal chord.
 - Prove that the evolute of hyperbola (10) (20) $2xy = a \text{ is } (x + y)^{\frac{2}{3}} - (x - y)^{\frac{2}{3}} = 2a^{\frac{2}{3}}.$
- **Q. 6.** (a) Define Supremum and Infimum of a sequence. Find the supremum and infimum (10) of the set

$$\left\{(-1)^n\left(1-\frac{1}{n}\right), n=1,2,3\dots\right\}.$$

(b) Evaluate

(b)

$$\lim_{x \to 0} \frac{(1+x)^{\frac{1}{x}} - e}{x}.$$

Page 1 of 2

(10) (20)

(10) (20)

SECTION-C

Q.7. (a) Show that
$$Log(1 + \cos\theta + i\sin\theta) = \ln(2\cos\frac{\theta}{2}) + i\frac{\theta}{2}$$
. (10)

- (b) Find v such that f(z) = u + iv is analytic. (10) (20)
- Q. 8. (a) Prove that the series $z(1-z) + z^2(1-z) + z^3(1-z) + \cdots$ converges (10) for |z| < 1, and find its sum.
 - (b) Find the residues of $f(z) = \frac{z^2 2z}{(z+1)^2(z^2+4)}$ at all its poles in the finite plane. (10) (20)

Reach out to us @ <u>info@thinked.co</u> If you are interested in writing for us email us at <u>writeforthinked@thinked.co</u>